

1

ME Capstone

Case Studies & Insights into Sustainable Design

Richard A. Simmons, PhD, PE

Feb 19, 2024

Outline: Case Studies and Insights into Sustainable Design

- UN SDGs
- A Cup of Tea?
- Comparing Unlike Energy Sources?
- Are EVs Emissions Free?

SUSTAINABLE GALS

UN Sustainable Development Goals

https://sdgs.un.org/goals

UN SDGs

- The Sustainable Development Goals (SDGs), were adopted by the United Nations in 2015 as a universal call to action to end poverty, protect the planet, and ensure that by 2030 all people enjoy peace and prosperity.
- The 17 SDGs are integrated—they recognize that action in one area will affect outcomes in others, and that development must balance social, economic and environmental sustainability.
- Countries have committed to prioritize progress for those who're furthest behind. The SDGs are designed to end poverty, hunger, AIDS, and discrimination against women and girls.
- The creativity, knowhow, technology and financial resources from all of society is necessary to achieve the SDGs in every context.

nked-public-university-energy

Trending News...

Home) Georgia Tech Named Top-Ranked Public University in Energy Georgia Tech Named Top-Ranked Public University in Energy FEB 07, 2024 - ATLANTA, GA Georgia Tech Research **Public University** in Energy **U.S. News and World Report**

U.S. News & World Report has <u>ranked</u> the Georgia Institute of Technology as the top public university and No. 3 nationally in energy and fuels research. This is the first year the category has been included in the annual rankings, and Georgia Tech's dominance reflects the dynamic research and expertise of the Institute.

"I'm thrilled to see Georgia Tech recognized for our leading-edge approach to creating sustainable energy solutions," said Executive Vice President for

🤈 🔣 🥠 🍖 🏥 😐 🧿

https://research.gatech.edu/georgia-tech-named-top-ranked-public-university-energy

also,

GT Sustainability Showcase during SDG Week...

Sustainability Showcase

SDG Week | March 4 - 8, 2024

Georgia Tech Brook Byers Institute for Sustainable Systems

Office of Sustainability

- Lightning Talks
- Panel Discussions
- Posters
- Art on Display

For details and updates, visit: sustainable.gatech.edu/showcase

SUSTAINABLE GOALS

Learn about all the SDG Week events at:

sustain.gatech.edu/sdg-week

March 6-7, 8:30-4pm, in the John Lewis Student Center's Atlantic Theater.

Poll Question 1

Suggest a method for boiling a cup of water

R. Simmons, Strategic Energy Institute, Georgia Institute of Technology, 2021

Some Methods for Boiling Water

Microwave

Gas Stovetop

Wood Fire (Open Flame)

Electric Kettle

*Source: Contemporary Energy Solar Kettle & Amazon

Poll Question 2

Suggest an equation for estimating the energy required to boil a cup of water

 $\mathbf{Q}_{in} = \mathbf{m} \cdot \mathbf{c}_{p} \cdot \Delta \mathbf{T}$

Knowns and Assumptions

Substance = Water

m=8.0 fl. oz. (1 cup)

m=0.227 kg

 $c_p=4.184 \text{ kJ/kg}^{\circ}\text{C}$

T_i=16°C T_f=100°C

R. Simmons, Strategic Energy Institute, Georgia Institute of Technology, 2021

Theoretical Energy Input 2 $\mathbf{Q}_{in} = \mathbf{m} \cdot \mathbf{c}_{p} \cdot \Delta \mathbf{T}$ H_2O H_2O $T_f = 100^{\circ}C$ T_i=16°C **Q**_{in} $Q_{in} = (0.227 \text{kg}) (4.184 \text{kJ/kg}^{\circ}\text{C}) (100-16^{\circ}\text{C})$ **Q**_{in}= 79.7 kJ Conversion: 1 kJ = 0.2777 Wh**Q**_{in}= 22.1 Wh How much energy is this? **REF:** W_{elec} = 10 W-h (to charge a smart phone)</sub> REF: W_{elec} = 37,000 W-h (to charge a Nissan Leaf) R. Simmons, Strategic Energy Institute, Georgia Institute of Technology, 2021

Boiling Water in an Electric Tea Kettle

Tea Kettle Experiment

Instantaneous Power to Boil 8oz of Water in Electric Tea Kettle

W_{elec}= P ·Δt W_{elec}≈ (1500 W) · (96 sec) W_{elec}≈ 142,000 W · s W_{elec}≈ **39.4 W**·h

 W_{elec} ≈ 39.4 Wh $Q_{min, theor}$ = 22.1 Wh η = E_{min}/E_{actual} η_{elec_kettle} ≈ 39.4Wh/57.5Wh

η_{elec_kettle}≈ 0.56 (56%)

11

Boiling Water in a Microwave

Microwave Experiment

Energy to Boil 8 oz Water in a Microwave

W_{elec}≈ (1380 W) · (150 sec)

W_{elec}≈ 207,000 W · s

W_{elec}≈ 57.5 W-h

 $W_{elec} = P \cdot \Delta t$

 INTERT ©
 725 PM
 69%

 Image: Constraint of the state of t

W_{elec}≈ 57.5 Wh Q_{min, theor}= 22.1 Wh

 $\eta = E_{min}/E_{actual}$

 $\eta_{microwave} \approx 22.1 Wh/57.5 Wh$

12

η_{microwave}≈ 0.38 (38%)

Boiling Water on a Gas Burner

Gas Burner Experiments

Open Pot 5000 BTU/hr (1466 W) Time to boil ≈ 390 s (0.108h)

 $W_{gas,low,open} = Q_{in} \Delta t$

W_{gas,low,open} ≈ (1466 W) · (390s)

W_{gas,low,open}≈ 572,000 W ⋅ s

W_{gas,low,open}≈ 159 W-h

η_{gas,low,open}≈ 0.14 (14%)

13

Closed Pot 9500 BTU/hr (2786 W) Time to boil ≈ 120 s (0.033h) $W_{gas,high,closed} = Q_{in} \cdot \Delta t$ W_{gas,high,closed} ≈ (2786 W) - (120s) W_{gas,high,closed}≈ 334,000 W · s W_{gas,high,closed}≈ 93 W-h η_{gas,high,closed}≈ 0.24 (24%)

Summary

Electricity

Natural Gas

W_{gas,low,open}≈ 159 W-h η_{gas,low,open}≈ 0.14 (14%)

W_{elec}≈ 39.4 W·h η_{elec_kettle}≈ 0.56 (56%)

W_{gas,high,closed}≈ 93 W-h η_{gas,high,closed}≈ 0.24 (24%)

Nature Reviews Physics | https://doi.org/10.1038/s42254-020-0233-1 | Published online 13 August 2020

R. Simmons, Strategic Energy Institute, Georgia Institute of Technology, 2022

Engineering 101: System Boundary is Key

Consider the Boundary & Upstream Impacts

Consider the Boundary & Upstream Impacts

Poll Question 3

What materials are used in an electric tea kettle?

R. Simmons, Strategic Energy Institute, Georgia Institute of Technology, 2022

Electric Kettle Raw Materials

Table 1. Inventory data for the plastic, metallic and eco-kettles

	Plastic kettle (polypropylene)	Metallic kettle (stainless steel)	Eco-kettle (polypropylene)	Data sources ^a
Raw materials				
Stainless steel (g)	248	645	342	Own measurement ^b
Brass (g)	27	24	26	~ ~
Copper (g)	20	19	23	~ ~
Aluminium (g)	-	-	34	~ ~
Tin (g)	-	-	0.11	~ ~
Silver (g)	-	-	0.02	~ ~
Polypropylene (PP) (g)	467	419	841	~ ~
Polyvinyl chloride (g)	58	57	58	~ ~
Nylon (g)	66	36	29	~ ~
Polyoxymethylene (POM) (g)	13	-	-	~ ~
Polycarbonate (g)	9	-	75	~ ~
Acrylonitrile butadiene styrene (g)	40	-	190	~ ~
High density polyethylene (g)	-	-	7	~ ~
Silicone (g)	16	1	37	~ ~

Gallego Schmid, Alejandro, Life cycle environmental evaluation of kettles: Recommendations for the development of eco-design regulations in the European Union, The Science of the total environment, 2017

LCA – Approach

Electric tea kettle LCA

Fig. 1. System boundaries for the kettles considered in the study

Electric Kettle Energy/Process Inputs

Packaging				~ ~
Low density polyethylene (g)	10	13	11	~ ~
Cardboard boxes (g)	380	500	325	~ ~
Production				
Injection moulding (heat) (MJ)	3.0	2.3	5.5	Manufacturer ^c
Injection moulding (electricity) (kWh)	1.0	0.8	1.9	~ ~
Metal stamping (heat) (MJ)	0.01	0.03	0.02	~ ~
Metal stamping (electricity) (kWh)	0.1	0.3	0.2	~ ~
Power cord, plugs, thermal socket				~ ~
and wire cables				
Heat (MJ)	0.04	0.04	0.04	~ ~
Electricity (kWh)	0.1	0.1	0.2	~ ~
Packaging				~ ~
Heat (MJ)	2.1	2.5	1.3	~ ~
Electricity (kWh)	0.2	0.2	0.1	~ ~
Assembly				
Water (L)	14	14	14	Fischer et al., 2014
		•		•

Electric Kettle Dist/Use/E-o-L

Distribution				
Raw materials: to factory (t'km)	0.1	0.2	0.2	Own assumption ^d
Packaging: to factory (t'km)	0.1	0.1	0.1	~ ~
Kettle: factory to Shanghai (t'km)	0.2	0.3	0.3	~ ~
Kettle: Shanghai Rotterdam (t'km)	28.4	36.0	42.0	Sea distance (2017)
Kettle: Rotherham to Munich (t'km)	1.1	1.4	1.7	Via Michellin (2017)
Kettle: distribution centre (Munich) to retailer (tkm)	0.2	0.3	0.3	Own assumption ^d
End of life: to treatment facility (t'km)	0.1	0.2	0.2	Own assumption ^e
Use				
Electricity (kWh)	829	829	532	Own measurements ^{b,f}
Water (L)	1542	1542	1028	Fischer et al. (2014)
End of life				
Recycling (plastics) (g)	243	191	447	Eurostat (2016b)
Recycling (metals) (g)	281	654	404	Kemna et al. (2011)
Recycling (cardboard) (g)	322	424	275	Eurostat (2016b)
Incineration with energy recovery	205	161	377	~ ~
(plastics) (g)				
Incineration with energy recovery	31	41	27	~ ~
(cardboard) (g)				
Landfilling (plastics) (g)	230	174	424	~ ~
Landfilling (metals) (g)	15	34	21	Kemna et al. (2011)
Landfilling (cardboard) (g)	25	36	23	Eurostat (2016b)

Electric Kettle LCA

Fig. 3. Life cycle environmental impacts of plastic, metallic and eco-kettles over their average useful lifetime (4.4 years).

Poll Question 4

What share of total energy is typically used by a Plug-In EV during Use-Phase?

- Resource Extraction & Manufacturing (M)
- Use-Phase (U)

End-of-Life Phase (EoL)

LCA- Car Example

Typical breakdown for a plug-in hybrid EV

- Resource Extraction & Manufacturing
 - + 40%
- End-of-Life Phase

Flowchart source: Bras, B. "Sustainable Design and Manufacturing Including Environmental and Social Considerations," www.sdm.gatech.edu

Compiled by: R. Simmons, Strategic Energy Institute, Georgia Institute of Technology, 2021

Use-Phase

LCA- Car Example

Typical energy breakdown for a conventional ICE car

- Resource Extraction & Manufacturing
 10%
- End-of-Life Phase

Flowchart source: Bras, B. "Sustainable Design and Manufacturing Including Environmental and Social Considerations," <u>www.sdm.gatech.edu</u>

Compiled by: R. Simmons, Strategic Energy Institute, Georgia Institute of Technology, 2021

Use-Phase

Energy/Emissions LCA for cars

LCA Energy (a)

(M) Mfg (U) Use (EoL) End of Life

Surprising Fact

99.3% of Lead Acid Batteries are recycled in the US

▶ 5% of Lithium Ion Batteries are recycled in the US

Sources: DOE. 2019 and wastedive.com

https://www.energy.gov/sites/prod/files/2019/07/f64/112306-battery-recyclingbrochure-June-2019%202-web150.pdf

https://www.wastedive.com/news/lithium-ion-battery-recycling-ev-li-cycleretriev/608778/#:~:text=The%20industry%20is%20familiar%20with,recycled% 2C%20according%20to%20the%20DOE.

R. Simmons, Strategic Energy Institute, Georgia Institute of Technology, 2022

Poll Question 5

How much CO₂ is emitted from the combustion of 1 gallon of gasoline?

Note: 1 gallon of gasoline weighs about 6.3 lbs.

 CO_2

A. Less than 3 lbs

B. Between 3 and 7 lbs

C. Between 7 and 16 lbs

D. More than 16 lbs

Calculating the CO₂ released by 1 gallon of gasoline

Consider the combustion reaction of octane, a primary constituent of gasoline:

$C_8H_{18} + 12.5(O_2 + 3.76 N_2) \rightarrow 8CO_2 + 9H_2O + 47N_2$

1 mol $C_8H_{18} \approx 114$ g/gmol

1 gallon \approx 6.3 lbs = 2860 g

Thus, we have 2860/114 mols of fuel = 25.1 mols fuel

 $1 \text{ mol CO}_2 \approx 44 \text{ g/gmol}$

The reaction produces \rightarrow 8 mols CO₂ for every mol of fuel

This equals $8*25.1 = 200.8 \text{ mols } CO_2$

→ 200.8 mols * 44g/gmol \approx 8835 g \approx **19.4 lbs**

Engineering 101: System Boundary is Key

System Boundary: US Economy

U.S. Biofuels Production

US Biofuels Production 2001-2019

All U.S. Ground Fuels:215 BGPY Share that is Biofuels: 8%

Source: USDA Economic Research Service, U.S. Bioenergy Statistics, 2021 https://www.ers.usda.gov/data-products/us-bioenergy-statistics/

Advanced Biofuels

Major 2nd Generation Biofuel Conversion Pathways:

Biochemical

- □ Pre-treatment of biomass into cellulose, hemicellulose & lignin
- □ Enzymatic hydrolysis
- □ Biological conversion of sugars to alcohol via fermentation

Thermochemical

- □ Heating in the absence of air/oxygen
- □ Extraction of hydrocarbons into liquid (pyrolysis) or gas (syngas)
- □ Reformation, purification & production of synthetic hydrocarbons

Some 2nd Generation Biomass Feedstocks & Their Common Fuels

- Municipal Wastes
 - Landfill Gas
 - Solid Waste-to-Energy
- Oils & oilseeds ⁻
 - Soy, Rapeseed, Palm...
- Sugar/Starch crops
 - Corn
 - Sugarcane
- Cellulosic -
 - Agricultural Waste
 - Crop by-products
 - Wood, chips, waste
- Aquatic Plants
 - Microalgae
 - Macroalgae
 - Other

- Natural Gases & Methane
- Biodiesel
- Grain Ethanol
- Butanol
- Cellulosic Ethanol
 - Syngas Liquids
 - Diesel from algae
 - Jet fuel from algae
 - Biomethane
- Hydrocarbons from Biomass
 - Co-firing
 - Synthetic fuel products

More info at source: NREL website, http://www.nrel.gov/biomass/pdfs/39436.pdf

Common biofuels & their benefits...

Biofuel & Feedstock	Energy Balance	GHG reduction		
Ethanol from Corn	1.4	20%		
Ethanol from Sugarcane	8.0	60%		
Cellulosic Ethanol	*6 - *14	*70-*90%		
Biodiesel from Rapeseed	2.5	40%		
Biodiesel from Soy	3.2	40%		

Average Values from Published Literature, *Cellulosic Ethanol Figures are estimates

Why is Hydrogen so enticing?

- Hydrogen can be an energy carrier or converted directly into electricity
- Hydrogen can be combusted directly in Gas Turbines
- Hydrogen can be combined with Carbon and synthesized into renewable fuels
- Hydrogen can help attain net zero CO2 emissions

Source: Estimated Energy Use, US DOE, Lawrence Livermore National Lab, 2019 https://flowcharts.llnl.gov/

Source*: Simmons and Metz, Georgia Tech Strategic Energy Institute, 2019

Why is Hydrogen so enticing?

> Fuel Cells (FCs) enable bi-directional conversion between hydrogen and electricity

H₂: So what's the catch?

Technical Challenges

- Conversion
- Storage
- Safety
- Distribution
- Combustion characteristics
- Diffusion rate
- Fungibility (i.e., "drop-in")
- •

Economic Challenges

- Capital cost
- Feedstock cost
- Storage cost & Leakage Loss
- Delivery cost
- Infrastructure implications

• • • •

Environmental Challenges

- Net Energy & CO₂ impact
- LifeCycle Assessment (LCA)
- Human Health
- Ecosystem Quality
- Resource Depletion
- Full Cost Accounting is complex

Hydrogen: Fuel of the Future? Joan Ogden, Physics Today 55, 4, 69 (2002)

https://h2tools.org/bestpractices/hydrogen-compared-other-fuels

How Green are Electric Cars?

Comparing vehicles using dissimilar energy sources

Comparison of Energy Use by Vehicle TypeVEHICLE TYPEDRIVING CYCLETEMPERATURE

Modeling is based upon representative vehicles

- Conventional
- ICE-SI (Toyota Corolla, Honda Civic, Ford Focus)
- ICE-CI (Volkswagen Jetta)
- Hybrid
- **HEV** (Toyota Prius)

- Plug-in hybrid
 PHEV40 (Chevrolet Volt)
- Electric Vehicle
- **EV** (Nissan Leaf)

Model Inputs

VEHICLE TYPE

DRIVING CYCLE

TEMPERATURE

Specifications	Vehicle Type:	ICE-	ICE-	HEV-	PHEV-	EV-
		SI ⁷	\mathbf{CI}^{8}	PS ⁹	40 ¹⁰	\mathbf{PAC}^{11}
	Source:	[8 ^{a,b,c}]	[8 ^d]	[8 ^a]	[8 ^e]	[8 ^f]
Vehicle Attribute						
Vehicle mass ¹ [kg]		1438	1595	1519	1857	1610
Drag coefficient		0.29	0.30	0.25	0.29	0.28
Frontal area [m ²]		2.12	2.10	2.17	2.16	2.31
Engine power ² [kW	7]	108	104	73	63	-
Electric motor pow	er ² [kW]	-	-	60	111	80
Total vehicle power	r ² [kW]	108	104	100	111	80
Battery mass ³ [kg]		-	-	45	198	294
Battery capacity ³ [k	xWh]	-	-	1.3	16.5	24.0
Fuel economy ⁴ [US	S ⁵ mpg]	31.4	34.0	50.0	37.0	-
Fuel consumption ⁴	[L/100km]	7.5	6.9	4.7	6.4	-
Elec. consumption ⁶	⁵ [Wh/km]	-	-	-	214	184
Equiv. fuel econ. ⁶ [mpge]	-	-	-	98	114
All electric range [l	km(mi)]	-	-	-	64(40)	134(84)

Simmons, Richard A. "A techno-economic investigation of advanced vehicle technologies and their impacts on fuel economy, emissions, and the future fleet." PhD diss., Purdue University, 2015.

Propulsion model

General dynamic force balance:

$$F_{tractive} = F_{rolling_resistance} + F_{aero_drag} + F_{hill_climb} + F_{acceleration}$$
 Eq. (9)

$$F_{tractive} = m_{veh} \cdot g(C_0 + C_1 v_{veh}) + 0.5 \rho_{air} C_{Drag} A_F v_{veh}^2 + m_{veh} g \cdot sin\theta_{grade} + m_{veh} \cdot a_{veh}$$
Eq. (10)

Gr.

Simmons, Richard A. "A techno-economic investigation of advanced vehicle technologies and their impacts on fuel economy, emissions, and the future fleet." PhD diss., Purdue University, 2015.

Energy use depends on vehicle type and locality

Simmons, Richard A. "A techno-economic investigation of advanced vehicle technologies and their impacts on fuel economy, emissions, and the future fleet." PhD diss., Purdue University, 2015.

State-by-state generation by source 2014

12. Generation by Fuel Type and CO₂ Emission Rates (eGRID2014v2)

(illustrative) Example Grid Dispatch Curve

Important Note: This is MARGINAL cost per unit (i.e., doesn't consider capex), Not Levelized Cost, or LCOE

Graphic Source: Northbridge Energy Partners, P. Kelly-Detwiler

Use phase emissions depend on: vehicle type and locality

Wide variation for grid-recharged EVs

RA Simmons, SV Garimella. Electric, hybrid and advanced vehicles: finding a lane on the road ahead. In: Yan, J. ed. Handbook of Clean Energy Systems. 2015. John Wiley & Sons, pp. 2279-99.

Upstream energy impact

System-Equivalent CO₂ Emissions by Vehicle Type and Locality

How Green are Electric Cars?

Charging Start Time Histogram, Feb 2020 GT

R. Simmons, Strategic Energy Institute, Georgia Institute of Technology, 2022

- EV Charging fn(time)
 - Sample Data
 - Georgia Tech Daytime Workplace Charging

- Emissions fn(time,location)
 - Top 2 Eastern Balancing Authorities
 - Typical Marginal CO2 emissions
 - Seasonal and Hourly

Tracking emissions in the US electricity system Jacques A. de Chalendar, John Taggart, Sally M. Benson Proceedings of the National Academy of Sciences Dec 2019, 116 (51) 25497-25502; DOI: 10.1073/pnas.1912950116

Resources of Interest

LCA examples

e-Scooters

• Hollingsworth, Joseph, Brenna Copeland, and Jeremiah X. Johnson. "Are e-scooters polluters? The environmental impacts of shared dockless electric scooters." *Environmental Research Letters* 14, no. 8 (2019): 084031.

Reusable vs. Disposable Cups

- Hocking, M. Reusable and disposable cups: An energy-based evaluation. Environmental Management (1994) 18(6):889-899.
- Woods, L, Bakshi, B. Reusable vs. disposable cups revisited: guidance in life cycle comparisons addressing scenario, model, and parameter uncertainties for the US consumer. Int J Life Cycle Assess (2014) 19:931–940.

Videoconferences vs. In-person meetings

Ong, Dennis, Tim Moors, and Vijay Sivaraman. "Comparison of the energy, carbon and time costs of videoconferencing and inperson meetings." *Computer communications* 50 (2014): 86-94.

Locality impacts of EV efficiency and emissions

 Tamayao, Mili-Ann M., Jeremy J. Michalek, Chris Hendrickson, and Inês ML Azevedo. "Regional variability and uncertainty of electric vehicle life cycle CO2 emissions across the United States." *Environmental science & technology* 49, no. 14 (2015): 8844-8855.

Resources of potential interest

https://epicenter.energy.gatech.edu/energy-101/

Energy 101 SE

Open Access 8-part Video Short Course

Resources of Interest

Hydrogen Readings

Applied Energy 281 (2021) 115958

Amjad Al-Qahtani ^a, Brett Parkinson ^a, Klaus Hellgardt ^a, Nilay Shah ^a, Gonzalo Guillen-Gosalbez ^{b,*}

^b Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
^b Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland

Al-Qahtani, Amjad, et al. "Uncovering the true cost of hydrogen production routes using life cycle monetisation." *Applied Energy* 281 (2021): 115958.

Blog on similar boiling water experiments and comparisons http://insideenergy.org/2016/02/23/boiling-water-ieg/

US. DOE, Office of Fossil Energy "Hydrogen Strategy: Enabling a Low-Carbon Economy," Washington DC. June 2020

Resources of potential interest

"Understanding the Global Energy Crisis"

Edited by Coyle & Simmons Published by Purdue University Press, 2014

Available for free download:

http://docs.lib.purdue.edu/purduepress_ebooks/29/

Thank you

Richard A. Simmons, PhD, PE Principal Research Engineer, Strategic Energy Institute Instructor, Woodruff School of Mechanical Engineering Georgia Institute of Technology <u>richard.simmons@me.gatech.edu</u> 404-385-6326

